
www.manaraa.com

AProSec: an Aspect for Programming Secure Web
Applications

Gabriel Hermosillo - Roberto Gomez-Cardenas
ITESM-CEM-Dpto. Ciencias Computacionales

Km. 3.5 Carretera Lago de Guadalupe
52926 Edo de Mexico, Mexico

+53 (55) 58.64.56.45
ghermosillo@itesm.mx,rogomez@itesm.mx

Lionel Seinturier - Laurence Duchien
LIFL – INRIA Jacquard Project

Cité Scientifique – Bât M3
F-59655 Villeneuve d’Ascq – France

+33 (0) 3 28 77 85 84
Lionel.Seinturier@lifl.fr, Laurence.Duchien@lifl.fr

ABSTRACT
Adding security functions in existing Web application servers is
now vital for the IS of companies and organizations. Writing
crosscutting functions in complex software should take advantage
of the modularity offered by new software development
approaches. With Aspect-Oriented Programming (AOP),
separating concerns when designing an application fosters reuse,
parameterization and maintenance. In this paper, we design a
security aspect called AProSec for detecting SQL injection and
Cross Scripting Site (XSS) that are common attacks in web
servers. We experiment this aspect with the AspectJ language and
the JBoss AOP framework. With this experimentation, we show
the advantage of runtime platforms such as JBoss AOP for
changing security policies at runtime. Finally, we describe related
work on security and AOP.

1. INTRODUCTION
Companies and organizations use Web servers to publish
information that concerns directly their users. However, other
institutions consult their operations through these same servers.
The ignorance of the developers concerning the vulnerabilities of
this kind of systems, highlights the weakness of these software.
OWASP's Top Ten listing references two common attacks on this
type of systems: Cross Site Scripting (XSS) and SQL injection
[1]. SQL injection is a technique where a would-be intruder
modifies an existing SQL request to post hidden data, to crush
important values, or to process dangerous orders for the database.
That is made when the application retrieves data sent by the
Internet users, and uses it directly to build a SQL request. Cross
Site Scripting (XSS) is an attack exploiting a weakness of a Web
site that fails to validate the parameters entered by the users. XSS
uses various techniques for injecting (and executing), scripts
written in languages such as JavaScript or VBScript. The goal of
these attacks is to keep cookies containing information identifying
users, or to mislead them later so that they provide these data to
the attacker.
Security techniques used by most web developers do not perform
very well. The approach Design for security defends the idea that
security should be taken into account during all the phases of the
development cycle and must influence deeply the design of the
application.
Aspect-Oriented Programming (AOP) is a good candidate for this
feature [2]. AOP has been proposed as a technique for improving

separation of concerns in software systems and for adding
crosscutting functionalities without changing the business part of
the software. AOP provides specific language mechanisms that
make possible to address concerns, such as security, in a modular
way. AOP languages and tools can be applied at compile-time or
at run-time. This way, the security issue in a software system can
be addressed
Our main objective is to design and implement a security aspect
called AProSec to deal with SQL Injection and XSS web attacks.
Our proposal is based on the aspect programming models offered
by AspectJ and JBoss AOP and defines the elements necessary for
the defense of a Web site against these attacks, not only by
validating and filtering the user info, but also by implementing a
SQL analyzer that can intercept and validate all the database
queries before they are processed. These elements will appear as
AspectJ [3] aspects woven at compile-time and, in a second
version, at run-time with the JBoss AOP [4] framework.
Our work is motivated by the need to fill the gap between an
integrated version of a web server with security functions and a
modular version with AOP techniques. This paper leads to the
definition of a model for addressing security issues in software
applications that could be re-used on several software systems
with few changes and be dynamically added at the runtime.
The rest of this paper is organized as follows. Section 2 presents
the motivation and principles of SQL Injection, XSS and AOP.
Section 3 provides the Web application architecture. Section 4
defines our AProSec Aspect, its integration with the web server
architecture and details the difference between two weaving with
AspectJ and JBoss AOP. Section 5 describes some related work.
Finally, Section 6 concludes and discusses some future work.

2. MOTIVATION AND PRINCIPLES
2.1 SQL injection and XSS
SQL injection
According to [1] a SQL injection attack consists in finding a
parameter that a web application sends to a database. The attacker
embeds malicious SQL commands into parameters in order to
trick the web application for forwarding a malicious query to the
database. As a result of this kind of attack, the database contents
can be corrupted, destroyed or disclosed.
Many techniques are used in SQL injection. The most popular are
tautology, union, additional declaration and comments. In order to

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7
Author manuscript, published in "The International Dependability Conference (ARES), Barcelona : Spain (2007)"

http://hal.inria.fr/inria-00155086/fr/
http://hal.archives-ouvertes.fr

www.manaraa.com

explain each technique, we will consider the case in which a web
application authenticates a user by executing the following query:
SELECT * FROM users WHERE name='alice' and
password = 'toto'
Tautology looks for a disjunction in the WHERE clause of a
select or update statement. In the previous example it can be made
by adding the statement 'a'='a', resulting in the following query:
SELECT * FROM users WHERE user='alice' and
password = 'toto' or 'a' = 'a'
The precedence operator causes the WHERE clause to be true for
every row, and all table rows will be returned.
The union clause allows grouping the result of two SQL queries.
The goal is to manipulate a SQL statement into returning rows
from another table. As an example we will assume that a database
containing the reports is available:
SELECT body, results FROM reports
When using this statement with our example, we will obtain the
following query:
SELECT body, results FROM reports
UNION
SELECT * FROM users
As result the query will display the reports list, but also the
database users in the application.
The additional statements technique attempts to add SQL
statements or commands to a SQL query. For example:
SELECT * FROM users WHERE name='alice' and
password = 'toto'
DELETE FROM users WHERE username = 'admin'.
When executing the previous query, the admin record would be
erased from the database.
We can also use comments. Most of the databases use the “--“ or
“#” characters for a comment indication. An attack can use the
comments to cut a SQL query and change the meaning of it. For
example the following SQL statement:
SELECT * FORM users WHERE name = 'alice' and
password = 'toto' can be transformed in the following way:
SELECT * FORM users WHERE name = 'admin' -- and
password = ''
The result will show all the information about the admin user in
the user’s database. All these attacks can be combined to form
more complex SQL queries.

XSS
The XSS cross site scripting is an attack oriented to the user’s
browser, in order to disclose the end user’s token, to attack the
local machine, or to spoof content to fool the user [1]. The
attacker uses a web application to send malicious code generally
in the form of a script to a particular user. The attack takes
advantage of web applications that do not validate the output
generated by a user’s input. The attack is known as XSS attack,
and not CSS attack, to avoid confusion with Cascading Style
Sheets.
As an example, consider a web application that gives the visiting
user the opportunity to send a comment through a guest book. A
malicious user can introduce the following characters “<! --“.
After some time, these characters are mixed with other users'
input, resulting in the following content in the guess book:
Very good web page, dude!
<!--
You’re da man, boss

When a user reads the guest book with a browser, it will read all
the contents and will interpret the character “<!--“ not as a user’s
opinion, but as a HMTL tag. As a result, the rest of the content in
the guest book is ignored by the users' browsers. We can imagine
the effects of the following statements in the guest book.
<script>
 for (q=0; q < 1000; q++)
 window.open(http://www.hot.example);
</script>
This is an example of a very simple XSS attack. An attacker can
introduce scripts that can take session cookies of a user and send
them to the attacker. With this information the attacker can use
the system as the original user.

2.2 AOP
The domain of aspect-oriented programming (AOP) [2][3]
appeared in 1996. It was pioneered by Gregor Kiczales and his
team, then at the Xerox Palo Alto Research Center. While original
and innovative, the domain of AOP inherits results from other
programming approaches such as reflection, open
implementations, meta-object protocols or generative
programming.
One of the experiences that motivated the definition of AOP was
the study of the Tomcat servlet engine. When studying the code
of Tomcat, Gregor Kiczales and his team discovered that, while
some functionality was cleanly modularized in classes, other,
such as user session management or logging, appeared in several
classes. This phenomenon is known as code scattering. When
developers want to fix a bug or to upgrade such functionalities,
they have to scan and modify several source files. While feasible,
this hinders productivity and is error-prone. In other cases, the
code scattered around several classes, was also redundant. The
consequence of this scattering is that a given method mixes
concerns related to different functionalities. This second
phenomenon is known as code tangling. Once again this hinders
the maintainability and understandability of applications.
When faced with these two phenomena, the question is whether
scattering and tangling are irreducible or is the result of a poor
design. In other words, could Tomcat be re-designed to prevent
scattering and tangling? While open, the answer to this question is
usually no. The idea is that a complex piece of software such as
Tomcat may be decomposed according to many criteria: the
decomposition may be data-driven, process-driven, driven by
various requirements such as security, integration with existing
information systems, or performance. It happens that one is
chosen by designers and that the other decompositions may not fit
in the scheme introduced by the first one, leading to
functionalities being scattered and tangled. The purpose of AOP is
then to provide a solution to solve these issues.
AOP, as a new programming paradigm, introduces notions such
as an aspect, a join point, a pointcut and an advice code.
However, these notions do not replace existing ones such as a
class, an object, a procedure or a method. Rather, AOP must be
seen as a complement to these existing techniques. Furthermore,
these notions are not specific to a programming style (e.g. object-
oriented or procedural) or a given syntax (Java, C#, Ada,
COBOL, etc.). Aspect-oriented extensions exist for many
languages, object-oriented or procedural. Furthermore, aspects
can be applied (the term used by the AOP community is woven)

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7

www.manaraa.com

at compile-time or at run-time. Experience has shown the
difficulty of writing crosscutting functions such as security [5].

3. Web application architecture

Figure 1: The architecture of our Web application server

Figure 1 shows the architecture of our Web Application Server
(WAS). The client sends a request to the Web Application Server.
This HTTP request is intercepted and validated by the AProSec
aspect. If needed, the WAS sends a request to the Database in
order to get a response for the client. This latter JDBC request is
also intercepted and validated by the AProSec aspect. If the
request is correct, it will be processed, otherwise it is rejected.

4. The AProSec Aspect
The AProSec aspect can be used by any AOP framework and is
composed of three parts. First, an advice (the added code) defines
the validation process. Second, the way AProSec validates the
requests depends on the options that the administrator selects on
the configuration file, as shown in Section 4.2. Finally, the
pointcut part (where the code is added) allows the weaving with
the WAS. How this weaving is made will be described in Section
4.3 and 4.4 for each implementation.

4.1 Advice
The advice part consists in two main validations:
1. HTTP requests parameters (intercepting javax.servlet.http.
HttpServletRequest.getParameter(String) call),
2. DB queries (intercepting java.sql.Statement.addBatch(String),
execute(String), executeQuery(String) and executeUpdate (String)
calls).
When implementing these validations, we consider several
syntaxes that should be validated: double and single quotes, SQL
Injection, and XSS. In the HTTP requests, we validate the
parameter value to avoid code injection and invalid HTML tags.
For DB queries, the validation is made by analyzing the query
string to prevent “always true” comparisons and comments.
When validating the HTTP requests, we prevent SQL Injection by
removing any single or double quotes sent by the user. As a
result, using the same example as before, for the user validation:
SELECT * FROM users WHERE user='alice' and
password = 'toto' or 'a' = 'a'

The attacker should have input alice as the user and toto' or
'a' = 'a as the password. AProSec would validate this and
change the password to toto\' or \'a\' = \'a taking the
whole string as the password and not as two operations.
SELECT * FROM users WHERE user='alice' and
password = 'toto\' or \'a\' = \'a'
As for the XSS, all the tags the user may input are transformed to
HTML code preventing the attacker from introducing any tags. If
the administrator wants to allow an HTML tag from the user,
these tags are transformed to safe tags (explained in Section 4.2).
Using the XSS example, in the input:
<script>
 for (q=0; q < 1000; q++)
 window.open(http://www.hot.example);
</script>
The <script> tag would be transformed into <script>
allowing the browser to print it as text an not interpret it as a
script. This includes other validations explained in this section.

4.2 The SQL Analyzer
Once the input got through the filter, if it is going to be used for a
database query, it will be validated again in the context of the
query. This helps to prevent unsafe queries to the database in case
any malicious input got through the previous filters.
In order to validate JDBC requests, AProSec checks that the
queries don't contain any comments or “always true” comparisons
by not allowing queries like:
'value' = 'value'
'value' != 'value2'
table1.field1 = table1.field1
login = 'admin' -- ' and password = ''

Doing this, the SQL Analyzer enforces the application's security
by not allowing unwanted code to be sent to the database and
executed.

4.3 Configuration of the AProSec aspect
Even though single and double quotes are part of the SQL
injection, the AProSec aspect manages them separately. We
define all the validations that can be done, but the administrators
can decide which ones to use by using the configuration file.
The configuration file is in XML format and is described in
Figure 2.
<?xml version="1.0"?>
<!DOCTYPE validator [
<!ELEMENT validator
(validateQuotes,validateApost,validateSQLInj,valid
ateXSS,validTag*)>
 <!ELEMENT validateQuotes (#PCDATA)>
 <!ELEMENT validateApost (#PCDATA)>
 <!ELEMENT validateBackslash (#PCDATA)>
 <!ELEMENT validateSQLInj (#PCDATA)>
 <!ELEMENT validateXSS (#PCDATA)>
 <!ELEMENT validTag (#PCDATA)>
]>

Figure 2: The configuration file
In order to define the validations to make, we define a set of
ELEMENT with the following meaning:
validator: This is the root element.
validateQuotes: To validate double quotes (“) from a
parameter. If this option is enabled, every time the applications
receives a form or URL parameter, it will convert the double
quote (“) to “backslash double quote” (\”).

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7

www.manaraa.com

validateApost: To validate single quotes (') from a
parameter. If this option is enabled, every time the application
receives a form or URL parameter, it will convert the single quote
(') to “backslash single quote” (\').
validateBackslash: To validate backslash (\) from a
parameter. If this option is enabled, every time the application
receives a form or URL parameter, it will convert the backslash
(\) to “double backslash” (\\).
validateSQLInj: To activate the SQL Analyzer and validate
database queries with certain rules. If this option is enabled, every
time the application issues a database call, the query is validated
to prevent unexpected queries to execute.
validateXSS: To validate user input for XSS attacks. If this
option is enabled, every time the application receives a form or
URL parameter, this parameter is validated and all the HTML
tags are transformed into safe tags.
validTag: To accept certain HTML tags. If this option is
enabled and the validateXSS option is enabled too, then for
every tag found in the parameter, this validation checks if it
should accept the tag and transform it to a safe tag. This tag must
be used for every HTML tag the administrator wants to accept.
A safe tag is the one that will not be printed as an HTML tag. For
example, if a parameter contains the tag “ LINK
”, the filter will transform it into “
LINK”, allowing the tag to be safely displayed. To
enable an option, the value “TRUE” (case insensitive) should be
used as the tag value. Any other value will disable the option. If
an element is not present, then the default values are taken. The
default values are all TRUE, without accepting any HTML tags.
Valid tags cannot contain an on* family element; if it does, it will
be removed. If we are accepting the <a> tag, the input: This is
a
link. Will be transformed as: This is a
link. Also, no parameter value can contain the words
“javascript”, “vbscript” nor “tcl”, to prevent attacks
like .

4.4 Weaving with AspectJ
AspectJ [3] is the most widely used language for aspect-oriented
programming. It defines an extension of the Java programming
language for dealing with aspects. The AspectJ compiler handles
Java source code or bytecode, weaves them with aspects, and
generates some bytecode that can then be executed with a
standard Java virtual machine.
Our first approach is made using AspectJ as the AOP framework,
Tomcat as the application server and MySQL as the database
manager. The code for intercepting the calls in AspectJ is
described in Figure 3.
pointcut dbWrite(String query): (call(*
java.sql.Statement.addBatch(String))
 || call(* java.sql.Statement.execute(String))
 || call(* java.sql.Statement.executeQuery
(String))
 || call(* java.sql.Statement.executeUpdate
(String)))
 && args(query);
pointcut getParameter(): call(String
javax.servlet.http.HttpServletRequest.getParameter
(String));
Object around(String query): dbWrite(query){
 Object ret = validator.Validator().validateQuery
(proceed());

 return ret;
}
String around(): getParameter(){
 return new validator.Validator().validate
(proceed());
}

Figure 3: The intercepting code with AspectJ
In AspectJ the aspect is defined using the extended java language
in a .aj file. By using the new expressions of the language we
declare our pointcuts specifying the calls to be intercepted. With
our pointcuts defined, we then call the validator to verify that the
parameter or query is not dangerous.

4.5 Weaving with JBoss AOP
JBoss AOP [4] is a framework for programming aspect-oriented
applications in Java. It can be used as a standalone framework or
embedded in the JBoss J2EE server. Web applications running on
this server can then take advantage of the aspect-oriented features
of the framework. JBoss AOP is an open-source project that can
be downloaded from http://www.jboss.org/products/aop
By using JBoss AOP, a vulnerable application can now be
protected at compile time or at runtime by applying the security
aspects. Both modes were tested. The main advantage of the load
time (or runtime) mode is that the application doesn't need any
manipulation before getting it in the WAS. Using the compile
time mode, we need to recompile the source files and then
package them before getting them to run in the WAS.
The JBoss code for intercepting the calls is described in Figure 4.
<aop>
 <bind pointcut="call(java.lang.String
$instanceof{javax.servlet.http.HttpServletRequest}
->getParameter*(java.lang.String))">
 <interceptor
class="interceptors.HTTPInterceptor"/>
 </bind>
 <bind pointcut="call(*
$instanceof{java.sql.Statement}-> addBatch*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptorQuery"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> execute*
(java.lang.String))">
 <interceptor
class="interceptors.QueryInterceptor"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> executeQuery*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptor"/>
 </bind>
 <bind pointcut="call(* $instanceof
{java.sql.Statement}-> executeUpdate*
(java.lang.String))">
 <interceptor class=
"interceptors.QueryInterceptor" />
 </bind>
</aop>

Figure 4: The intercepting code with JBoss AOP
When using JBoss AOP we define our aspect using a XML file.
Here we specify the call we want to intercept and the class we
want to call when intercepted. This class will then call the
validator to verify the parameters and queries.

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7

www.manaraa.com

4.6 Experimentation results
We developed a vulnerable online bookstore, to test the AProSec
aspect. First we tried all sorts of SQL Injection and XSS attacks to
see how the application behaved. Then we protected it with
AProSec using two approaches: AspectJ and JBoss AOP. After
using AProSec we attacked the application again, but were unable
to bypass the application's security.
For example, let assume than an attacker tries to input the
following query in order to obtain information as a system
administrator:
 select * from users where login=’admin’ - - and
‘pwd=’ ‘;

The query will not be processed by the database because it
contains a commentary inside it. The SQL analyzer will detect it
and will refuse to pass it to the database manager.
In another example the attacker will try to obtain information
using a query that contains a statement that is always true.
 select * from users where login='admin' and
pwd='' or 1=1;

The analyzer will detect that there is a statement that always is
true and will refuse to process it.
Both frameworks, AsoectJ and JBoss AOP, will help to reach our
goal, but since we prefer to keep the aspect working without the
need of the source code, the runtime weaving sounds as a better
option. This way, even if we don't have access to the source code
we can still improve our applications' security.

5. RELATED WORK
Security approaches for SQL injection and
XSS
The best way to be protected against SQL attacks is to inspect all
the data the user introduces to the application. Most of the work in
this area attempts to limit the way in which a pre-programmed
query will be used, allowing only the sentence that the
programmer wants to define.
In [6] the authors propose to use a parsing tree that represents the
parsed SQL query. Once the user introduces the required data, a
new parsing tree is generated and compared with the first one. An
SQL injection attack will produce a different tree.
The AMNESIA project [7] defines a model for detection of illegal
SQL queries, before they are executed by the DBMS. In the first
phase, the source code is analyzed in order to generate the model
that contains the valid SQL queries. In a second phase, a real time
monitor compares the SQL generated by the program with those
stored in the model.
SQL DOM technique, described in [8], is a set of classes that are
strongly-typed to a database schema. Instead of string
manipulation, these classes generate SQL statements. The
solution is based on an executable called sqldomgen, which
generates a dynamic link library (DLL) based on the structure of
the database. The DDL contains classes that will be used to
construct dynamic SQL statements without manipulating any
strings.
In [9] the authors propose a randomization of the instruction set.
They create an execution environment that is unique to the
running process. In order to achieve this, the original opcodes of

the computer server are transformed by a random key. If an
attacker tries to inject code and it does not know the key, the
machine will not execute this code, causing a runtime exception.
Another solution is the use of application IDS (Instruction
Detection System). This kind of IDS is oriented to supervise
specific applications, including SQL applications. The authors in
[10] propose to use a Network IDS in order to look for invalid
SQL statements in the network traffic.
The advantage of AProSec, in comparison with the other works, is
that it is based on AOP and it considers both, SQL Injection and
XSS in the same aspect. Also, when using JBoss AOP it provides
runtime weaving, allowing the administrator to incorporate
AProSec without recompiling the application. Once the
application is running with AProSec, any change in the
configuration file will be taken during runtime, without stopping
the application at any moment.

5.1 AOP and Security
The domains of aspects and security have already been the subject
of several works. Among the security related functionalities that
have been the topic of an aspect-oriented development, one can
find: access control [15] [16] [17], encryption [12] [14], the
adding of digital signatures [13], authorization [14] and
authentication [14]. Most of the implementations described in
these studies, such as [13] [14] [16], rely on AspectJ.
The work presented at [18] is closest to the objectives of our
project. The authors propose an aspect to detect cross-site
scripting. Their approach relies on sanitizing, i.e. replacing
special characters by quoted ones, the input data submitted by
users to web applications. The authors take the case of servlet-
based web applications. When data is submitted to a servlet, one
of the issues which are raised consists in determining whether it
comes from an end-user or whether it comes from another servlet
which delegates the request by mean of the transfer mechanism
provided by the servlet container. In the latter case, data is
supposed to be trustworthy as it simply originates from another
part of the application. In this case, the sanitizing can be skipped
in order to save computation time. To achieve this, the authors
propose to extend the syntax of the AspectJ pointcut language
with a new construct to detect data flows: the servlet input is
sanitized if and only if it is written back on the servlet output
stream. As far as we know, this data flow operator remains at the
level of a proposal and has not been implemented. Furthermore, it
remains to be seen in what circumstances this solution is more
efficient than a solution that would sanitize all input streams
regardless of their origin.

6. CONCLUSION
We have presented our approach for writing a security aspect in a
web application server. This aspect detects SQL injection and
XSS attacks in requests. As an advantage to usual solutions, this
aspect allows the interception of all database accesses and
validates them with its SQL Analyzer before dangerous
information is stored. Moreover, the AProSec aspect can be
parameterized. The administrator doesn't need to recompile the
code and can freely decide which validations to apply to each web
application. We have described our two experimentations, one
with AspectJ and another with JBoss AOP.
With our approach, an aspect allows a clear separation of the
security code and the WAS code. The initial code of the WAS

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7

www.manaraa.com

was not modified. By this way the aspect will be able to evolve
independently. We only have to program it once for all web
applications.
For further study, a first approach would be to add path traversal
attack detection. The path traversal of a file is an attack in which,
through request, the user provides information concerning the
access path of a file (e.g., "../../target_dir/target_file"). This kind
of attack tries to access files that shouldn’t be accessible. These
attacks can be sent in the form of a URL or of an entry such that it
can have access to a given file. Second, cryptography issues can
be added to applications in order to protect the disclosure of data
for unauthorized parts. AOP will also take care of the key
encryption management, and the encryption/decryption processes.
This will be transparent for the users and their e-mails will be
safe. Authentication can be added to, in order to accept any kind
of known applications, token, or biometric. Finally, we plan to
design and develop a more expressive pointcut language for
security by the definition of an Aspect Specific Language (ASL).

7. ACKNOWLEDGMENTS
This work is partially funded by the Franco-Mexican Laboratory
on Informatics (LaFMI) (http://lafmi.imag.fr/).

8. REFERENCES
[1] OWASP Top Ten Most Critical Web Application Security

Vulnerabilities, http://www.owasp.org
[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, J. Irwin. Aspect-Oriented
Programming. Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP'97). LNCS 1241.
pp 220-242. June 1997. Springer-Verlag.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W. Griswold. Overview of AspectJ. Proceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP'01). LNCS 2072. pp 327-353. June 2001. Springer-
Verlag.

[4] M. Fleury, F. Reverbel. The JBoss Extensible Server.
Proceedings of the 4th ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware'03). LNCS 2672. pp
344-373. June 2003. Springer-Verlag.

[5] J. Viega, J.T. Bloch and P. Chandri, Applying Aspect-
Oriented Programming to Security, Cutter IT Journal,
Volume 14, No. 2, pp. 31-39, 2001 10

[6] G. Buehrer, B. Weide, P. Sivilotti, Paolo, Using Parse Tree
Validation to Prevent SQL Injection Attacks, Proceedings of

the 5th international workshop on Software engineering and
middleware SEM '05, p. 106 – 113, September 2005.

[7] W. Halfond, A. Orso, AMNESIA: Analysis and Monitoring
for Neutralizing SQL – Injection Attacks. In Proceedings of
20th ACM International Conference on Automated Software
Engineering (ASE), Nov. 2005. 7, 2005, p. 174 – 183.

[8] R. McClure, I. Krüger, Sql Dom: Compile Time Checking of
Dynamic SQL Statements. Proceedings of the 27th
international conference on Software engineering. p. 88 – 96,
May 2005.

[9] Kc, Gaurav, A. Keromytis, V. Prevelakis, Countering Code-
Injection Attacks With Instruction-Set Randomization.
CCS’03, Proceedings of the 10th ACM conference on
Computer and communications security, p.272 – 280,
October 2003.

[10] K. Mookhey, N. Burghate, Detection of SQL Injection and
Cross-site Scripting Attacks. SecurityFocus. Marzo 17, 2004.

[11] Workshop for Application-level Security (AOSDSEC) @ the
3rd International Conference on Aspect-Oriented Software
Development (AOSD’04). March 2004. Lancaster, UK.

[12] G. Bostrom. Database Encryption as an Aspect. In 11.
[13] R. Laney, J. van der Linden, P. Thomas. Evolution of

Aspects for Legacy System Security Concerns. In 11.
[14] M. Huang, C. Wang, L. Zhang. Toward a Reusable and

Generic Security Aspect Library. In 11.
[15] T. Verhanneman, F. Piessens, B. De Win, W. Joosen. View

Connectors for the Integration of Domain Specific Access
Control. In 11.

[16] B. De Win, F. Sanen, E. Truyen, W. Joosen, M. Südholt.
Study of the Security Concern. Network of Excellence on
Aspect-Oriented Software Development. Milestone 9.1. July
2005.

[17] B. De Win, W. Joosen, F. Piessens. AOSD & Security: A
Practical Assessment. Workshop on Software Engineering
Properties of Languages for Aspect Technologies (SPLAT)
@ AOSD’03. pp 1-6. Boston, USA. March 2003.

[18] K. Kawauchi, H. Masuhara. Dataflow Pointcut for Integrity
Concerns. In 11.

in
ria

-0
01

55
08

6,
 v

er
si

on
 1

 -
15

 J
un

 2
00

7

